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Abstract: The mathematics curriculum in the UK has changed dramatically over 

the last ten years and mental calculation strategies have attained a dominant position 

in the primary curriculum. Drawing on data from a study of trainee teachers‟ 

competence in mental mathematics, this study explores the implications of the 

change in curriculum focus for trainees‟ capacity to work „connectedly‟ within the 

context of mental mathematics. The results and analysis of the test of trainee 

teachers‟ competence and their procedural preferences provide very little evidence 

of connected thinking. The differences and evidence of success associated with 

different operations suggest that they may experience and perceive mental 

mathematics, not as a whole, but as an assortment of disparate procedures. The 

study highlights the need to address the way in which calculation is covered on 

courses of initial teacher training. 
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Introduction: the British Mathematics Curriculum 

 
The National Numeracy Strategy (NNS) (DfEE, 1998) was introduced into British 

schools in 1999 because of fears about apparent falling standards in numeracy 

among school-leavers (Callaghan, 1987). There were also concerns that British 

schools compared badly with those in other countries (DfEE, 1998, Basic Skills 

Agency, 1997). A Task Group was set up in 1997 to review research and theory and 

thereby to explore the possibility of raising mathematical achievement. It led to the 

establishment of the NNS (Brown, Askew, Baker, Denvir, & Millet, 1998) which 

was incorporated in 2007 into the new Primary National Strategy (PNS) (DfES, 

2007a). The PNS includes an online version of the updated NNS, called „The 

Primary Framework for Literacy and Mathematics‟ (DfES, 2007a).  

 

A new emphasis on mental mathematics 

Mental mathematics was emphasized in the original NNS and in its most recent 

form, arguably as a result of some highly influential research taking place in the 

Netherlands (Beishuizen, 1997). The emphasis placed on developing mental 
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calculation was radical in its implications and effects. For example, the NNS (DfEE, 

1998) stated that children should not be taught a standard method of written 

calculation until they were able to „add or subtract reliably any pair of two digit 

numbers in their heads‟ (DfEE, 1998, p7). However, although young children were 

expected to use oral methods, the use of pencil and paper was not prohibited. 

Informal jottings were to be encouraged and in the early years children were to be 

taught to record answers to problems. As children got older and began to use larger 

numbers, informal jottings could be used to assist their mental calculations.  

 

Furthermore, children were now expected to deal with whole numbers. In 

comparison, until the implementation of the NNS (DfEE, 1998), children were 

taught to split numbers into tens and units and then add or subtract them separately. 

The stance adopted in the NNS (DfEE, 1998) was based on new evidence 

(Beishuizen, 1997) which suggested that children‟s understanding of the number 

system developed more effectively when they thought of numbers as a whole 

because they were more likely to make good use of estimation and approximation 

techniques. 

 

The PNS (DfES, 2007a), the most recent manifestation of the NSS (DfEE, 1998), 

reasserts the importance of mental capability as is shown in the guidance paper 

written specifically about calculation (DfES, 2007b): 

 

As children‟s mental methods are strengthened and refined, so too are 

their informal written methods. These methods become more efficient 

and succinct and lead to efficient written methods that can be used more 

generally. (p. 1) 

 

The emphasis on mental capability was one of the biggest changes introduced in the 

NNS and a considerable amount of work has been undertaken to develop this aspect 

of children‟s mathematical understanding (Anghileri, 1999; Beishuizen, 1999; 

Treffers & Beishuizen, 1999; Thompson, 1997).  

 

This work has led Beishuizen (1997) to point out some of the dangers inherent in 

the reliance on mental calculation. He argues that there is a difference between 

doing mental arithmetic in your head, and doing mental arithmetic with your head. 

He suggests that mental recall (i.e. memorizing number facts) is done in the head, 

whereas the mental strategies that lead to understanding are done with the head. 

Partly because results can be arrived at quickly, there is a danger, when talking 

about daily mental work (known and encouraged in the NSS (DfEE, 1998) as the 

“mental and oral starter”) of focusing on doing work in the head, emphasizing the 

procedural at the expense of understanding. 
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The NNS (DfEE, 1998), and the PNS (DfES, 2007a) acknowledge the need to be 

cautious. The guidance paper for calculation suggests that the development of 

mental capability is more than drill and practice, procedural understanding and 

memorizing number facts; it is also about pupils making decisions and choices for 

themselves, using mental skills to monitor progress and to decide whether solutions 

make sense (DfES, 2007b).  

 

The preparation of teachers 

The NNS (DfEE, 1998) and the PNS (DfES, 2007a), having entrenched the 

development of pupils‟ mental capability within mathematics education at Key 

Stages 1 and 2
1
 also took into account the implications for teachers and their 

preparation. The content of initial teacher education programmes was targeted 

through the introduction of Circular 4/98 (DfEE, 1998). This specified in 

considerable detail the knowledge, understanding and skills that all trainee teachers 

should have before the end of their course. In 2002, this circular was replaced with a 

document entitled „Qualifying to teach‟ (Teacher Training Agency, 2003). The 

detailed listing of trainee teachers‟ required knowledge, understanding and skills 

was replaced by two sentences: 

 

They have a secure knowledge and understanding of the subjects they are 

trained to teach…. For Key Stage 1 and/or 2, they know and understand 

the curriculum for each of the National Curriculum core subjects, and the 

frameworks, methods and expectations set out in the National Numeracy 

Strategy …. (p. 8) 

 

These publications suggest that there is an on-going requirement within teacher 

education to promote and assess the development of trainee teachers‟ own 

knowledge and understanding of mental mathematics as they prepare to meet the 

obligations and expectations of the NNS (DfEE, 1998) and the PNS (DfES, 2007a) .  

 

In this context there is no known published research on the particular challenges 

involved in teaching mental mathematics. However, Beishuizen‟s (1997) concern 

about the distinction between working in the head and working with the head and 

the PNS‟s appeal for pupils to make decisions and choices for themselves, using 

mental skills to monitor progress and to decide whether solutions make sense 

(DfES, 2007b), are mirrored by concepts such as „relational‟ understanding (Skemp, 

1989) and „connected knowledge‟ (Ma, 1999; Davis, 2001) which have emerged 

                                                 
1 In the UK, Key Stage 1 refers to pupil aged 5-7 and Key Stage 2 refers to pupils aged 8-11. 
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from general research on the knowledge requirements of teachers of mathematics 

conducted over the last two decades. 

 

Skemp (1989) argued that understanding can be both relational and instrumental 

and if the aim is to develop relational understanding in children (that is, knowing 

both what to do and why), then teachers of mathematics must have relational 

understanding, too. Ball (1990) claimed that mathematics teachers need knowledge 

of the nature and discourse of mathematics enquiry and that their knowledge needs 

to be correct, connected and meaningful. Askew, Brown, Rhodes, Wiliam, and 

Johnson (1997) defined primary mathematics teachers‟ development in terms of 

their „appreciation of the multifaceted nature of mathematical meaning‟ (p. 93).  

 

Ma (1999) compared American and Chinese teachers and found that the Chinese 

education system encourages learning where problems are approached in a number 

of ways and where there is an expectation that any given result will be 

mathematically justified. She described this as „profound‟ learning that is „deep, 

broad and thorough‟ (p.121) and which produces connected knowledge. Connecting 

with more conceptually powerful ideas produces depth, connecting with concepts of 

similar power produces breadth and thoroughness is „the capability to „pass 

through‟ all parts of the field – to weave them together‟ (p. 121). Davis (2001) 

agrees. Arguing that connectedness is an integral part of mathematics classrooms, 

he claims that: 

 

Addition cannot be grasped without realising its relationship with 

subtraction and the way in which it operates within the set of natural 

numbers, the integers and ultimately the set of real numbers.  (p. 136)  

 

But he goes further when he suggests that: 

 

The connectedness of this discipline extends beyond the links between 

mathematical ideas as such. There are relationships to empirical concepts. 

For instance, we cannot exhaust the „meaning‟ of subtraction merely by 

specifying the sets of numbers to which this operation may be applied, its 

relationship to addition, and so on. Something must also be said about the 

way in which it may be modelled in the „real world‟. It can be illustrated 

by means of the physical removal of objects from a group and by the 

physical comparison of one group of objects with another. (p. 137) 

 

Connected thinking as described in the literature indicates an ease or familiarity 

with the relationships and connections between numbers, operations and objects. 

Problem solving relies on the construction of informal, bespoke strategies rather 
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than the mechanical application of algorithms and standard methods, and multiple 

strategies are routinely used for testing and checking.  

 

Logically, mental mathematics cannot be exempt from these ambitions. The implicit 

assumption is that if pupils are to experience mental mathematics in the way 

advocated in the literature and the PNS (DfES, 2007b), trainee teachers should 

develop the facility to work „connectedly‟ (Ma, 1999) with regard to mental 

mathematics. This study is designed to test some of the elements within that 

assumption by seeking answers to the following specific questions:  

 

1. In a cohort of trainee teachers what is the incidence of the use of 

informal strategies across a range of basic mental mathematics 

problems and when are they successful?  

 

2. Do trainee teachers of mathematics rely on the use of algorithms or 

standard methods of written calculations to solve mental mathematics 

problems and to what effect?  

 

3. To what extent do trainee teachers attempt to justify, mathematically, 

any given result, for example through the use of multiple checking 

methods?  

The Study 

 
The study‟s subjects were the 170 trainee teachers on a post graduate certificate of 

education teacher training programme lasting one year and focusing on the primary 

age group (Key Stages 1 and 2). Post Graduate Certificate of Education teacher 

training course. All participants had a first degree (or equivalent) in a subject 

directly relevant to the national curriculum in primary schools. In addition, to gain 

entry to the programme, trainees were required to have General Certificate of 

Secondary Education grade C or above (or equivalent) and to pass a basic 

mathematics test during the interview for a place on the course. The mathematics 

test included basic numeracy questions, together with problems requiring reasoning 

and proof. Test results showed that the cohort represented a broad range of ability 

and previous experience of mathematics. 

 

The course began with two weeks‟ observation and task-focused experience in 

primary schools. Trainees then spent twelve weeks on a teaching programme within 

the University. This included modules on subject knowledge and pedagogic 

knowledge in the National Curriculum‟s core subjects of mathematics, English and 

science. Trainees then completed a six week teaching practice block in a primary 
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school, followed by a further four weeks of University-based training. The final 

school placement of nine weeks was tapered to allow trainees to undertake an 

equivalent teaching timetable to that expected of a newly qualified teacher.  

 

Two-thirds of the way through the course, prior to the final school placement, the 

whole cohort completed a test of mental mathematical competence (Table 1). The 

test consisted of twenty problems involving all four number operations and 

incorporating different numbers of digits, decimals and fractions. During the 

introduction to the test it was described as a mental test. However, trainees had a 

space in which to do jottings should they choose to do so. This was done to 

establish the preferred method of computation, to provide data on the methods and 

strategies used within and across items and to identify the frequency of use of 

multiple methods for individual items. 

 

Trainees‟ use of formal or informal methods was of particular interest. Formal 

methods were defined as algorithms, that is, procedures for solving a problem in a 

finite number of steps which did not require an understanding of the process (e.g. 

solving division by fractions problems by inverting one fraction and multiplying, 

and using carrying, borrowing or decomposition for subtraction). Informal methods 

included rounding, adjusting and partitioning, where calculations took into account 

the numbers involved and decisions were made about the most appropriate 

calculation. For example, Item 5 (199 + 174) could be solved informally by 

rounding to 200, then adjusting (200 + 174 – 1). 

 

Items were chosen so that their solution was relatively straightforward when using 

informal methods and rather more complicated when using standard methods of 

written calculation, i.e., formal algorithms, mentally. For example, Item 2 (1442 + 

4739) was a relatively complicated calculation to perform mentally, using a formal 

algorithm, since it involved “carrying” several times as shown in Figure 1 and the 

potential for errors was large. It was relatively straightforward when using informal 

partitioning methods.  

 

 

 1 4 4 2 

+ 4 
1 

7 3 
1 

9 

 6 1 8 1 

    

Figure 1. Formal algorithm for Item 2 
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This was the justification for the study‟s assumption that trainees who solved the 

problems mentally (without using written working) used an informal method but it 

is acknowledged that this included cases where trainees relied on „known facts‟ to 

which they had instant recall through memory. 

Results 

Items were marked and recorded according to whether the solution was correct, 

whether any written working was used and if so, whether it was a formal or 

informal method.  

 

Table 1 shows a summary of the number of correct responses for each item and the 

type of method used. These data were analysed according to the study‟s specific 

research questions. 

 

Incidence of the use of informal strategies  

Table 2 shows the incidence of the attempted use of informal methods. The items 

are ordered, beginning with the item attempted most often, using informal methods.  

 

Table 2 shows that the three questions prompting the greatest amount of informal 

working were those which involved multiplying or dividing by one or two digit 

numbers. In these cases, there was negligible recorded use of algorithms (Table 1). 

The fourth most commonly attempted item using informal methods was Item 18 

(200 ÷ 25). Once again there was very little use of algorithms and none in relation 

to a related fact, 100 ÷ 25 = 4. 

 

Item 20 (1.2 ÷ 0.2) was also frequently attempted using informal methods, but less 

than half of the trainees obtained the correct solution. The informal written 

strategies which trainees employed used knowledge of fractions, or inverse 

operations. Some trainees wrote the problem out again, using fractions
10

12
÷

10

2
 then 

rearranged to give 6
2

10

10

12
 , or 6

5

30

1

5

5

6

5

1

5

6
 . When this approach was 

used, the correct solution was obtained. Another strategy used was to rearrange to 

give 0.2 × 5 = 6. Two of the three items which prompted the least amount of 

informal working involved multiplication and subtraction of fractions (Table 2).  
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Table 1 

Responses and Incidence of Written and Informal Working by Item 
 
 

 

 
 

Item 

No. 

 
 

 

 
 

Item 

 
 

 

 
% of 

trainees 

with 

correct 

solutions 

Results link to attempted 
questions (not necessarily 

correct) 

Results link to those solutions which were correct 

% of trainees 

attempting 
each question 

using written 

working 

% of informal 

methods out of 

those who 

attempted 
using written 

methods 

% of correct 

solutions without 

using written 

working out of 

those who got it 
correct 

% correct 

solutions using 

informal written 

methods out of 

those who got it 
correct 

% correct 

solutions using 

some sort of 

informal 

method 

1 95 + 46 95 40 43 57 16 73 

2 1442 + 4739 89 87 20 9 16 25 

3 ½ + ⅜ 82 72 9 19 5 24 

4 0.4 + 2.8 94 35 10 62 3 65 

5 199 + 174 92 58 41 39 23 62 

6 49 – 18 92 38 40 57 14 70 

7 2002 – 2485 63 50 19 35 6 41 

8 ¾ - ⅔ 64 78 3 6 0 6 

9 2.58 – 1.29 77 77 14 14 8 22 

10 7 × 8 92 6 100 86 5 92 

11 32 × 20 93 50 78 47 36 83 

12 155 + 156 93 52 38 46 18 64 

13 52 × 34 63 94 45 0 22 22 

14 ⅔ × ⅝ 48 73 9 2 4 6 

15 3.4 × 4.9 31 78 26 1 4 5 

16 8 ÷ 2 98 1 0 97 0 97 

17 42 ÷ 7 98 9 82 90 8 97 

18 200 ÷ 25 88 15 78 75 9 84 

19 ⅞ † ⅓ 24 53 6 1 0 1 

20 1.2 ÷ 0.2 49 30 7 32 13 45 
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Table 2 

Responses and Incidence of the Attempted Use of Informal Methods 

Item No. Attempted, using informal methods 

10 7 × 8 

16 8 ÷ 2 

17 42 ÷ 7 

18 200 ÷ 25 

20 1.2 ÷ 0.2 

11 30 × 20 

1 95 + 46 

6 49 – 18 

4 0.4 + 2.8 

12 155 + 156 

5 199 + 174 

7 2002 – 2485 

19 ⅞ † ⅓ 

13 52 × 34 

15 3.4 × 4.9 

3 ½ + ⅜ 

9 2.58 – 1.29 

14 ⅔ × ⅝ 

2 1442 + 4739 

8 ¾ - ⅔ 
 

 

Successful use of informal methods 

Table 3 shows these items in order of those solved correctly, using informal 

methods. 

 

The same three items appear at the top of Tables 2 and 3, showing that the three 

most correct items were also solved informally. This relationship appeared to hold 

for all items suggesting a relationship between choice of strategy and success. The 

suggestion was further examined during analysis of the jottings provided on the test 

papers.  
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Table 3 

Responses and Incidence of Correct Solution using Informal Methods 

Item No. Correct, using informal methods 

16 8 ÷ 2 

17 42 ÷ 7 

10 7 × 8 

18 200 ÷ 25 

11 30 × 20 

1 95 + 46 

6 49 – 18 

4 0.4 + 2.8 

12 155 + 156 

5 199 + 174 

20 1.2 ÷ 0.2 

7 2002 – 2485 

2 1442 + 4739 

3 ½ + ⅜ 

13 52 × 34 

9 2.58 – 1.29 

14 ⅔ × ⅝ 

8 ¾ – ⅔ 

15 3.4 × 4.9 

19 ⅞ † ⅓ 
 

Analysis and Discussion 

 
Item type, choice of strategies and success 

The relationship between the type of item, successful completion and reliance on 

written working, whether formal or informal, was complex. Item 13 (52 × 34) and 

Item 15 (3.4 × 4.9) (Table 1) illustrate this complexity. 63% of trainees correctly 

answered Item 13 and 94% of those who attempted it used some written working. 

Of those who chose to use written working, almost half used informal methods. The 

most popular informal method was one which involved some element of 

partitioning; this was done in a variety of ways, but the most frequent choice was 

(52 × 30) + (52 × 4). This item prompted the largest range of informal methods; 

below is an example of the types of strategies employed. 
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 ((34 × 100) ÷ 2) + (34 × 2) 

 ((52 × 10) × 3) + (52 × 4) 

 (10 × 34 × 5) + 34 + 34 

 ((52 × 20) + 520) + (52 × 4) 

 

5% of the cohort used the grid method for this item, but not always with success. 

 

x 50 2 

30 1500 60 

4 200 8 

 

In this case, the errors, which included entering incorrect numbers in the operant 

cells and entering 150 in the first cell rather than 1500, were not rectified through 

the application of checking procedures. 

 

Of the 37% of trainees who were unable to solve this problem accurately, the most 

frequent error - the incorrect application of the distributive law – implied a lack of 

understanding of the relationship between the operation of multiplying in relation to 

the numbers: 

52 × 34 = (50 × 30) + (2 × 4) 

 

The same errors were displayed for Item 15 (3.4 × 4.9). Only 31% of the trainees 

were able to solve this problem and very few did so without using written working. 

In total 78% tried to use written working, almost 75% of whom tried to use a formal 

algorithm such as that below: 

 

  3 . 4  

 × 4 
1 

. 9 
3 

 

 

 

 

1 

3 

3 

. 

. 

0 

6 

6 

0 

 1 6 . 6 6 

 

Just under half of the trainees using this method gave 166.6 as an answer, implying 

a lack of connection between the operation of multiplying and place value and little 

recognition of the advisability of using alternative methods, for example estimation, 

to check. 

 

The most commonly used informal strategy was to rewrite the problem without the 

decimal point, in effect multiplying both numbers by ten. However, many trainees 
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divided the answer by ten rather than a hundred, again suggesting a lack of 

connection between the operation and place value. One trainee wrote that she didn‟t 

know how to complete this calculation accurately, but changed it to 
2

1
3  multiplied 

by 5, to give an approximate solution.  

 

As with the previous item, partitioning was a popular choice of strategy but once 

again the connection between the operation and the numbers was not fully 

appreciated and the distributive law was incorrectly applied. 

3.4 × 4.9 = (3 × 4) + (0.4 × 0.9) 

 

The four items, Items 3, 8, 14 and 19, which prompted the greatest amount of 

formal written working or algorithms were those involving fractions.  

 

For three out of four of the fraction problems, approximately three quarters of the 

trainees used a formal written method. The fraction problem which prompted the 

least amount of written working (53%) was a problem involving division of 

fractions (Item 19: 
3

1

8

7
 ). However, this was clearly the problem that trainees 

found the most difficult; only 24% were able to solve it although they had 

successfully solved fraction problems involving addition and subtraction. The most 

common error was to invert the wrong fraction, resulting in an inverted solution. Six 

trainees added comments to their test paper noting that they were unable to 

remember which fraction to invert, or that they could not remember the rule for 

dividing fractions. During overheard conversations after the test trainees confessed 

that they did not know whether or not „to turn upside down and multiply‟, which 

fraction to invert and whether they needed to find a common denominator.  

 

A common error for the problem that involved multiplying fractions was the 

practice of finding a common denominator, and then multiplying or dividing the 

numbers. For example, a typical solution for Item 14 (
8

5

3

2
 ) is shown below: 

 

 

 

Although at this stage, the calculation was not incorrect, few trainees starting with 

this strategy went on to complete the problem. Two trainees continued to attempt to 

solve the problem, but made mistakes in calculating 16 × 15 or 24 × 24.  

 

24

15

24

16

8

5

3

2

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Item 7 ( 24852002 ) was the only item involving a negative solution. 63% of 

trainees gave the correct solution and of those, over half relied on a formal written 

method. Some inverted the numbers, used an algorithm and then remembered to add 

a minus sign. 37% of trainees failed to solve this problem. Of the incorrect 

solutions, the majority wrote down 483, omitting the negative sign.  

 

Across all items where written working was used, a formal algorithm was the most 

popular choice. In fact, it was used in 75% of the cases. The exceptions were those 

items involving knowledge of multiplication tables (Items 10, 11, 17 and 18). When 

a formal algorithm was not used, the most popular strategies were partitioning, the 

grid method, rounding and adjusting, use of knowledge of place value, and 

doubling. 32% of the cohort used partitioning to solve Item 13 (52 × 34) and a 

further 10% used the grid method. For Item 12 (155 + 156) 29% of the cohort used 

a formal algorithm (such as that shown in Figure 1) and 13% used doubling, either 

by doubling 150, then adding 11, or doubling 155 and adding 1. 

 

Checking strategies / justifiable results  

Using Ma‟s (1999) definition of connected thinking in mathematics, it was possible 

to interrogate the data further to determine if there was evidence to show that 

trainees knew when their solutions were mathematically justified.  

 

Trainees were given as long as they needed to complete the test and were 

encouraged to check their work. However, there was very little evidence of 

solutions being checked for accuracy. Where some evidence was available, it was 

mainly because informal (written) strategies had been used initially, and formal 

algorithms had been squeezed into the remaining space, or indeed on the back of the 

paper.  

 

In other cases, even when trainees were seemingly aware that their use of 

algorithms was defective, there was little evidence of attempts to use other 

strategies to check. For example, fewer than half the trainees gave a correct solution 

to Item 14 (
8

5
 

3

2
 ). This was the question which prompted the most amount of 

crossed out working, implying that trainees had some level of understanding that 

either the answer or the process was incorrect. But there was no evidence of the 

substitution of other strategies.  

  

The use of rote memory to recall number facts  

The National Numeracy Strategy (DfEE, 1998) suggested that the ability to 

remember number facts and recall them without hesitation was a necessary element 

in the development of numeracy.  
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The results from some of the questions in this study shed some light on trainee 

teachers‟ use of rote memory to recall number facts. Some of the most commonly 

correctly-solved problems in the competence test were also the ones which 

prompted the least amount of written working (Table 1). These were Item 10 

( 87 ), Item 16 ( 28 ) and Item 17 ( 742 ). At least 90% of the trainees were 

able to solve these problems correctly without written working. For the purpose of 

this research, as was noted earlier, it was assumed that no written working implied 

the use of informal methods. However, in the case of these questions it is possible 

that trainees relied on the recall of facts memorized in primary school. All of the 

problems could have been solved using knowledge of multiplication tables without 

recourse to invented or informal methods and without making connections between 

multiplication and its inverse operation, division. So, since they were successful, 

would it matter if trainee teachers were relying on recalled facts rather than using 

informal methods? The evidence from Item 20 ( 2.02.1  ) suggests that it did. 

Although the basic number fact required to solve the problem was extremely 

simple, only 49% of trainees were able to solve it correctly. This implies that for all 

but the most basic problems, rote knowledge of number facts is insufficient for their 

solution.  

 

As has been reported above, the data provided examples of the use of what have 

been defined as „formal‟ algorithms. There was also evidence that participants may 

have used some „informal‟ methods as a set of rules, hence creating a new 

algorithm. The grid method was one such example. Its use in some circumstances, 

as was reported above, led to incorrect solutions because it was applied regardless 

of place value. 

 

Characteristic strategies of successful trainees 
The results for those trainees obtaining correct solutions for at least 85% of items 

show that their approaches to each item varied significantly, but the four items 

which prompted the most frequent use of formal algorithms were Item 2 

( 47391442 ), Item 9 ( 29.158.2  ), Item 13 ( 3452 ), and Item 15 ( 9.44.3  ). 

This suggests that formal methods are likely to be used when the numbers are large, 

when more steps are involved during the use informal methods, or in the case of 

decimals.  

Conclusions and Implications 

 
The results and analysis of the test of trainee teachers‟ competence and their 

procedural preferences as revealed by formal and informal written methods provide 
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very little evidence of connected thinking. For example, the use of multiplication 

and addition as if they are interchangeable involves a denial of the fundamental 

connection between these and other operations. Confusion about the inversion of 

fractions algorithm directly challenges the internal consistency of the multiplication 

and division operations. The significant differences and evidence of success 

associated with different operations suggest that the trainee teachers experience and 

perceive mathematics, not as a whole, but as an assortment of disparate procedures. 

This provides support for the proposal made by Frank (1990) and Foss and 

Kleinsasser (1996) that many teachers view mathematics as a collection of 

fragmented facts, procedures and right and wrong answers.  

 

This conclusion highlights the need to address the way in which calculation is 

covered on courses of initial teacher training. On the basis of the results, it is 

difficult to be as confident as Murphy (2006) about the development of trainee 

teachers‟ connected mathematics thinking through the practice of teaching. The 

trainees in the study had had substantial school experience before taking the test and 

the results give at least some cause for concern, suggesting that a difference may 

exist between the rhetoric of pedagogical skills for relational teaching and what 

Murray (2006) refers to as the necessary underpinning reconstruction of trainee 

teachers‟ own subject understanding. The implication is that the calculation element 

of the course needs to make provision for the development of a „fuller, deeper 

understanding of the number system and number operations and relations, and the 

way different interpretations of these interconnect‟ (Askew et al., 1997, p. 93). 
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